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1 Performance assessment

To quantify the performance of our reconstruction method, we introduce two standard measurement

indices, the area under the receiver operating characteristic curve (AUROC) and the area under the

precision-recall curve (AUPR) [S1]. True positive rate (TPR), false positive rate (FPR), Precision and

Recall that are used to calculate AUROC and AUPR are defined asfollows:

TPR(l) =
TP(l)

P
, (S1)

wherel is the cutoff in the edge list,TP(l) is the number of true positives in the topl predictions in the

edge list, andP is the number of positives in the gold standard.

FPR(l) =
FP(l)

Q
, (S2)

whereFP(l) is the number of false positive in the topl predictions in the edge list, andQ is the number

of negatives in the gold standard.

Precision(l) =
TP(l)

TP(l) + FP(l)
=

TP(l)

l
, (S3)

Recall(l) =
TP(l)

P
, (S4)

whereRecall(l), which is called sensitivity, is equivalent toTPR(l).

2 Detailed results in addition to Table I and II in the main text

Table I in the main text shows the minimum data amount that ensure at least95% AUROC and AUPR

simultaneously for different cases. In Supplementary Materials, we provide more details of AUROC and

AUPR as a function of data amount for all the cases presented in Table I in the main text. Supplementary

Fig. S2- S4 show for network sizeN = 100 and average node degree〈k〉 = 6, AUROC and AUPR

as a function of data amount for different varianceσ2 of Gaussian white noiseN (0, σ2) embedded in

the time series for obtaining vectorY in the reconstruction formY = ΦX. For three types dynami-

cal processes, evolutionary ultimatum games, transportation and communications, full reconstruction of

network structure can be achieved from sufficient data in three types model networks. In the absence of

noise or for small noise variance, sayσ = 0.05 (Supplementary Fig. S2 and Fig. S3), full reconstruc-

tion can be assured by small amounts of data relative to the network sizeN . For large noise variance,

say,σ = 0.3 (Supplementary Fig. S4), full reconstruction can still be achieved based on relatively large

amounts of data for different networks, manifesting the strong robustness of our method against noise in

time series.

We have also tested the robustness of our reconstruction against the existence of externally inacces-

sible nodes. We assume that a fraction of randomly selected nodes cannot be measured and their time

series are missing. Supplementary Fig. S5 and Fig. S6 show AUROC and AUPR as a function of data
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amount fornm = 5% andnm = 30% fraction of inaccessible nodes, respectively. We see that even

for nm = 30%, we can still accurately reconstruct connections among available nodes from time series

of three dynamical processes, indicating strong robustness of our method against the missing of partial

nodes. Furthermore, based on the reconstructed network, wecan identify who has connections with un-

observable nodes in evolutionary ultimatum games. This canbe accomplished by comparing actualY

with reconstructedY′ from time series. To be concrete, we can use the time series ofplayers’ strategies

and reconstructed network to calculate payoffs of a player in different rounds. The calculatedY′ will

differ from the actualY if the reconstructed node connects to some of the inaccessible nodes, which

provides a clue for inferring direct neighbors of missing nodes.

Supplementary Fig. S7 and Fig. S8 show AUROC and AUPR as a function of data amount for av-

erage node degree〈k〉 = 12 and〈k〉 = 18, respectively, withN = 100. The results demonstrate that

for large values of〈k〉, our method can guarantee complete identification of all links for different com-

binations of network structures and dynamical processes. Supplementary Fig. S9 and Fig. S10 show for

〈k〉 = 6, AUROC and AUPR as a function of data amount for the network sizeN = 500 and1000,

respectively. Supplementary Fig. S11 shows the reconstruction performance of our method applied to

several empirical networks. We see that for larger network sizes, our method requires relatively less data

to ascertain all links. This is due to the fact that the neighboring vector becomes sparser in larger net-

works. TheL1 norm in the lasso ensures the requirement of less data for reconstructing a sparser vector,

allowing us to achieve full reconstruction by using less data for larger networks.

3 Data of empirical networks

In the main text, we have used several empirical networks to test the performance of our reconstruction

method. Here we provide more details of these empirical networks, as displayed in Supplementary

Table S1.

Supplementary Table S1: Summary of the empirical networks used in Table II in the maintext. Here

N denotes network sizes,L denotes the number of links and〈k〉 represents average degree of a network.

Network data can be downloaded from relevant references.

Networks N L 〈k〉 Class Description

Karate [S2] 34 78 4.6 Social network Network of friendship ina karate club

Dolphins [S3] 62 159 5.1 Social network Frequent associations between 62 dolphins

Netscience [S4] 1589 2742 3.5 Social network Coauthorship network of scientists working on network

IEEE 39 BUS [S5] 39 46 2.4 Power network 10-machine New-England Power System network

IEEE 118 BUS [S6] 118 177 3.0 Power network A portion of the American Electric Power System network

IEEE 300 BUS [S7] 300 409 2.7 Power network Network developedby the IEEE Test Systems Task Force

Football [S8] 115 613 10.7 Social network Network of American college football game

Jazz [S9] 198 2742 27.7 Social network Network of jazz musicians

Email [S10] 1133 5451 9.6 Social network Network of email interchanges
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4 Inferring intrinsic individual dynamics in ultimatum games

Insofar as the network structure of evolutionary ultimatumgames are ascertained, strategy updating

rules of players accompanied with mutation noise can be inferred by a phase diagram. To be concrete,

we introduce the phase diagram by defining two variables, as follows:

∆pi,max ≡ |pi(t+ 1) − pmax(t)| (S5)

and

∆pi,i ≡ |pi(t+ 1)− pi(t)|, (S6)

where| · | represents absolute value andpmax is the proposal associated with maximum payoff in the

neighborhood of nodei. Here∆pi,max represents the absolute difference betweenpi(t+1) andpmax(t).

If ∆pi,max is sufficiently small, e.g., smaller than strategy updating(SU) noiseδ (mutation rate), we can

confidently infer that playeri learned the strategy corresponding to the maximum payoff ini’s neighbors

at time t + 1. On the other hand,∆pi,i that measures the absolute difference betweenpi(t + 1) and

pi(t) can be used to ascertain if playeri updated his/her strategy at timet + 1. The fact that∆pi,i

is smaller than SU noiseδ indicates thati didn’t update his/her strategy at timet + 1. Thus the two-

parameter phase diagram provides necessary information for revealing how players update their strategies

in the evolutionary games. Since we have already had the interactions network amount players, by

incorporating the time series of payoffs and strategies, wecan identifypmax(t) of each player in each

round, allowing us to draw the phase diagram.

As shown in Supplementary Fig. S12, the∆pi,max-∆pi,i phase diagram is divided into four regions

by two boundaries of SU noise. In region (I) (∆pi,max < δ and∆pi,i > δ), data points reflect that

individuals update their strategies by imitating those of their neighbors with the highest payoffs. In

region (II) (∆pi,i < δ and∆pi,max > δ), data points indicate that players do not vary their strategies in

the next round. In region (III) (∆pi,max < δ and∆pi,i < δ), one cannot ascertain the actions of players

due to the fact that the difference betweenpi(t+1) andpmax(t) is less than the noiseδ. However, if data

points appear in the diagonal of region (III), the players corresponding to the data points must hold the

best strategies in their neighborhoods in the last round. Inregion (IV) (∆pi,max > δ and∆pi,i > δ), data

points indicate players update their strategies by learning from their neighbors without highest payoffs.

Despite the existence of SU noise, the phase diagram provides sufficient information to uncover how

players update their strategies, regardless of noise. As shown in Supplementary Fig. S12, all data points

are presented in region (I), (II) and (III), manifesting that they either learn from the best strategy or keep

their own strategies in the last round. The phase diagram canbe implemented for each single player,

allowing us to identify a mixture of players with different learning inclinations. Although the ground

truth of SU noise is unknown, the explicit boundary induced by SU noise in Supplementary Fig. S12

yields the SU noise directly, allowing us to infer intrinsicnodal dynamics associated with mutation noise

in strategy updating. If all players learn from best strategies in their neighborhood, there will exist an

abrupt transition at the boundaries from region (I) to region (IV) and from region (II) to region (IV). The

phase transition can be simply proved to exist in the phase diagram.
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6 Supplementary Figures

Supplementary Figure S1: (a) AUROC and (b) AUPR of reconstructing resistor networks from different

amounts of Data. (c) AUROC and (d) AUPR of reconstructing communication networks from different

amounts of Data. Watts-Strogatz small-world networks are used with network sizeN = 100, average

degree〈k〉 = 6, and rewiring probability 0.3. Data is the number of data samplings divided by network

sizeN . The dashed lines represent the results of completely random guesses.
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Supplementary Figure S2: AUROC and AUPR of reconstructing random (ER), small-world (SW) and

scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum games,

(c)-(d) transportation of electric current and (e)-(f) communications. Network sizeN is 100. Each

data point is obtained by averaging over 10 independent realizations. Error bars denote the standard

deviations. Average degree〈k〉 = 6 and Rewiring probability of SW networks is 0.3.
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Supplementary Figure S3: AUROC and AUPR of reconstructing random (ER), small-world (SW) and

scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum games,

(c)-(d) transportation of electric current and (e)-(f) communications in the presence of noise. Network

sizeN is 100. Each data point is obtained by averaging over 10 independent realizations. Error bars

denote the standard deviations. The average degree〈k〉 = 6. Rewiring probability of SW networks is

0.3. The distribution of noise isN (0, 0.052).

8



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Data

0.0

0.2

0.4

0.6

0.8

1.0

A
U
R
O
C

a

ER
SW
SF

0.0 0.2 0.4 0.6 0.8 1.0
Data

0.0

0.2

0.4

0.6

0.8

1.0

A
U
R
O
C

c

ER
SW
SF

1.0 1.5 2.0 2.5 3.0
Data

0.0

0.2

0.4

0.6

0.8

1.0

A
U
R
O
C

e

ER
SW
SF

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Data

0.0

0.2

0.4

0.6

0.8

1.0

A
U
P
R

b

ER
SW
SF

0.0 0.2 0.4 0.6 0.8 1.0
Data

0.0

0.2

0.4

0.6

0.8

1.0

A
U
P
R

d

ER
SW
SF

1.0 1.5 2.0 2.5 3.0
Data

0.0

0.2

0.4

0.6

0.8

1.0

A
U
P
R

f

ER
SW
SF

Supplementary Figure S4: AUROC and AUPR of reconstructing random (ER), small-world (SW) and

scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum games,

(c)-(d) transportation of electric current and (e)-(f) communications in the presence of noise. Network

sizeN is 100. Each data point is obtained by averaging over 10 independent realizations. Error bars

denote the standard deviations. The average degree〈k〉 = 6. Rewiring probability of SW networks is

0.3. The distribution of noise isN (0, 0.32).
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Supplementary Figure S5: AUROC and AUPR of reconstructing random (ER), small-world (SW)

and scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum

games, (c)-(d) transportation of electric current and (e)-(f) communications in the presence of externally

inaccessible nodes. The fractionnm of externally inaccessible nodes is 0.05. Network sizeN is 100.

Each data point is obtained by averaging over 10 independentrealizations. Error bars denote the standard

deviations. Average degree〈k〉 = 6. Rewiring probability of SW networks is 0.3.
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Supplementary Figure S6: AUROC and AUPR of reconstructing random (ER), small-world (SW)

and scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum

games, (c)-(d) transportation of electric current and (e)-(f) communications in the presence of externally

inaccessible nodes. The fractionnm of externally inaccessible nodes is 0.3. Network sizeN is 100. Each

data point is obtained by averaging over 10 independent realizations. Error bars denote the standard

deviations. Average degree〈k〉 = 6. Rewiring probability of SW networks is 0.3.
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Supplementary Figure S7: AUROC and AUPR of reconstructing random (ER), small-world (SW) and

scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum games,

(c)-(d) transportation of electric current and (e)-(f) communications. Network sizeN is 100 and average

degree〈k〉 = 12. Each data point is obtained by averaging over 10 independent realizations. Error bars

denote the standard deviations. Rewiring probability of SWnetworks is 0.3.
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Supplementary Figure S8: AUROC and AUPR of reconstructing random (ER), small-world (SW) and

scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum games,

(c)-(d) transportation of electric current and (e)-(f) communications. Network sizeN is 100 and average

degree〈k〉 = 18. Each data point is obtained by averaging over 10 independent realizations. Error bars

denote the standard deviations. Rewiring probability of SWnetworks is 0.3.
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Supplementary Figure S9: AUROC and AUPR of reconstructing random (ER), small-world (SW) and

scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum games,

(c)-(d) transportation of electric current and (e)-(f) communications. Network sizeN is 500 and average

degree〈k〉 = 6. Each data point is obtained by averaging over 10 independent realizations. Error bars

denote the standard deviations. Rewiring probability of SWnetworks is 0.3.
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Supplementary Figure S10: AUROC and AUPR of reconstructing random (ER), small-world (SW) and

scale-free (SF) networks based on the time series obtained from (a)-(b) evolutionary ultimatum games,

(c)-(d) transportation of electric current and (e)-(f) communications. Network sizeN is 1000 and average

degree〈k〉 = 6. Each data point is obtained by averaging over 10 independent realizations. Error bars

denote the standard deviations. Rewiring probability of SWnetworks is 0.3.
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Supplementary Figure S11: AUROC and AUPR of reconstructing several empirical networks based

on the time series obtained from (a)-(b) evolutionary ultimatum games, (c)-(d) transportation of electric

current and (e)-(f) communications. Three empirical networks: Karate, Dolphins and Netscience net-

works are used in (a)-(b). Three empirical networks, IEEE 39BUS, IEEE 118 BUS and IEEE 300 BUS

networks are used in (c)-(d). Three empirical networks, Football, Jazz and Email networks are used in

(e)-(f). Each data point is obtained by averaging over 10 independent realizations. Error bars denote the

standard deviations.
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Supplementary Figure S12: Four phases are identified in the phase diagram: (I) imitate the best strategy

in neighbors, (II) strategy unchanged, (III) indistinguishable and (IV) imitate other strategies.∆pi,max ≡

|pi(t + 1) − pmax(t)| and∆pi,i ≡ |pi(t + 1) − pi(t)|, where| · | represents absolute value andpmax

is the proposal associated with maximum payoff in the neighborhood of nodei. SW networks are used

with network sizeN = 100, average degree〈k〉 = 6, and rewiring probability 0.3. The dashed lines are

∆pi,max = δ and∆pi,i = δ.
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